IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Higher Order Neural Network Architectures for Agent-Based Computational Economics and Finance

Higher Order Neural Network Architectures for Agent-Based Computational Economics and Finance
View Sample PDF
Author(s): John Seiffertt (Missouri University of Science and Technology, USA)and Donald C. Wunsch II (Missouri University of Science and Technology, USA)
Copyright: 2009
Pages: 15
Source title: Artificial Higher Order Neural Networks for Economics and Business
Source Author(s)/Editor(s): Ming Zhang (Christopher Newport University, USA)
DOI: 10.4018/978-1-59904-897-0.ch004

Purchase

View Higher Order Neural Network Architectures for Agent-Based Computational Economics and Finance on the publisher's website for pricing and purchasing information.

Abstract

As the study of agent-based computational economics and finance grows, so does the need for appropriate techniques for the modeling of complex dynamic systems and the intelligence of the constructive agent. These methods are important where the classic equilibrium analytics fail to provide sufficiently satisfactory understanding. In particular, one area of computational intelligence, Approximate Dynamic Programming, holds much promise for applications in this field and demonstrate the capacity for artificial Higher Order Neural Networks to add value in the social sciences and business. This chapter provides an overview of this area, introduces the relevant agent-based computational modeling systems, and suggests practical methods for their incorporation into the current research. A novel application of HONN to ADP specifically for the purpose of studying agent-based financial systems is presented.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom