IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

GTM User Modeling for aIGA Weight Tuning in TTS Synthesis

GTM User Modeling for aIGA Weight Tuning in TTS Synthesis
View Sample PDF
Author(s): Lluís Formiga (Universitat Ramon Llull, Spain)and Francesc Alías (Universitat Ramon Llull, Spain)
Copyright: 2009
Pages: 8
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch117

Purchase

View GTM User Modeling for aIGA Weight Tuning in TTS Synthesis on the publisher's website for pricing and purchasing information.

Abstract

Unit Selection Text-to-Speech Synthesis (US-TTS) systems produce synthetic speech based on the retrieval of previous recorded speech units from a speech database (corpus) driven by a weighted cost function (Black & Campbell, 1995). To obtain high quality synthetic speech these weights must be optimized efficiently. To that effect, in previous works, a technique was introduced for weight tuning based on evolutionary perceptual tests by means of Active Interactive Genetic Algorithms (aiGAs) (Alías, Llorà, Formiga, Sastry & Goldberg, 2006) aiGAs mine models that map subjective preferences from users by partial ordering graphs, synthetic fitness and Evolutionary Computation (EC) (Llorà, Sastry, Goldberg, Gupta & Lakshmi, 2005). Although aiGA propose an effective method to map single user preferences, as far as we know, the methodology to extract common solutions among different individual preferences (hereafter denoted as common knowledge) has not been tackled yet. Furthermore, there is an ambiguity problem to be solved when different users evolve to different weight configurations. In this review, Generative Topographic Mapping (GTM) is introduced as a method to extract common knowledge from aiGA models obtained from user preferences.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom