The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Generalized External Optimization: A New Meta-Heuristic Inspired by a Model of Natural Evolution
Abstract
In this chapter a recently proposed meta-heuristic devised to be used in complex optimization problems is presented. Called Generalized Extremal Optimization (GEO), it was inspired by a simple co-evolutionary model, developed to show the emergence of self-organized criticality in ecosystems. The algorithm is of easy implementation, does not make use of derivatives and can be applied to unconstrained or constrained problems, non-convex or even disjoint design spaces, with any combination of continuous, discrete or integer variables. It is a global search meta-heuristic, like the Genetic Algorithm (GA) and the Simulated Annealing (SA), but with the advantage of having only one free parameter to adjust. The GEO has been shown to be competitive to the GA and the SA in tackling complex design spaces and a useful tool in real design problems. Here the algorithm is described, including a step-by-step implementation to a simple numerical example, its main characteristics highlighted, and its efficacy as a design tool illustrated with an application to satellite thermal design.
Related Content
S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh.
© 2025.
16 pages.
|
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan.
© 2025.
22 pages.
|
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi.
© 2025.
22 pages.
|
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh.
© 2025.
24 pages.
|
U. Vignesh, Arpan Singh Parihar.
© 2025.
34 pages.
|
Sharmistha Dey, Krishan Veer Singh.
© 2025.
20 pages.
|
Kalpana Devi.
© 2025.
26 pages.
|
|
|