The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Gene Expression Dataset Classification Using Artificial Neural Network and Clustering-Based Feature Selection
Abstract
With the progression of bioinformatics, applications of GE profiles on cancer diagnosis along with classification have become an intriguing subject in the bioinformatics field. It holds numerous genes with few samples that make it arduous to examine and process. A novel strategy aimed at the classification of GE dataset as well as clustering-centered feature selection is proposed in the paper. The proposed technique first preprocesses the dataset using normalization, and later, feature selection was accomplished with the assistance of feature clustering support vector machine (FCSVM). It has two phases, gene clustering and gene representation. To make the chose top-positioned features worthy for classification, feature reduction is performed by utilizing SVM-recursive feature elimination (SVM-RFE) algorithm. Finally, the feature-reduced data set was classified using artificial neural network (ANN) classifier. When compared with some recent swarm intelligence feature reduction approach, FCSVM-ANN showed an elegant performance.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|