IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Fuzzy Logic-Based Round Trip Time Scaling and Scheduling in High Speed TCP Stacks

Fuzzy Logic-Based Round Trip Time Scaling and Scheduling in High Speed TCP Stacks
View Sample PDF
Author(s): V. Kavidha (Dr. Sivanthi Aditanar College of Engineering, India)and V. Sadasivam (Manonmaniam Sundarnar University, India)
Copyright: 2015
Pages: 14
Source title: Research Methods: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-7456-1.ch021

Purchase

View Fuzzy Logic-Based Round Trip Time Scaling and Scheduling in High Speed TCP Stacks on the publisher's website for pricing and purchasing information.

Abstract

Network management and control is a complex problem that requires intelligent, control methodologies to obtain satisfactory performance. Round trip time (RTT) scaling mechanism has been introduced for changing congestion window and to perform congestion control satisfactorily in all circumstances. This paper presents a fuzzy RTT scaling (FRTTS) scheme that performs RTT scaling and RTT scheduling for different high speed transmission control protocol (TCP) networks. In this scheme, RTT samples are allocated requesting application by using RTT scheduling factor and RTT samples are scaled for an application by using RTT scaling factor. A RTT scaler placed at the end node performs the RTT scheduling as well as RTT scaling. We also apply a FRTTS scheme on different high speed TCP's namely high-TCP (H-TCP) and scalable-TCP(S-TCP) and demonstrates that it provides better performance than non fuzzy scheme. The scheme has been extensively simulated to test the performance in terms of flow rate, RTT flows, packet size and congestion window size. The results show that FRTTS scheme provides better performance than non fuzzy scheme which employs dynamic RTT scheduling and RTT scaling.

Related Content

Tutita M. Casa, Fabiana Cardetti, Madelyn W. Colonnese. © 2024. 14 pages.
R. Alex Smith, Madeline Day Price, Tessa L. Arsenault, Sarah R. Powell, Erin Smith, Michael Hebert. © 2024. 19 pages.
Marta T. Magiera, Mohammad Al-younes. © 2024. 27 pages.
Christopher Dennis Nazelli, S. Asli Özgün-Koca, Deborah Zopf. © 2024. 31 pages.
Ethan P. Smith. © 2024. 22 pages.
James P. Bywater, Sarah Lilly, Jennifer L. Chiu. © 2024. 20 pages.
Ian Jones, Jodie Hunter. © 2024. 20 pages.
Body Bottom