IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Functional Dimension Reduction for Chemometrics

Functional Dimension Reduction for Chemometrics
View Sample PDF
Author(s): Tuomas Kärnä (Helsinki University of Technology, Finland)and Amaury Lendasse (Helsinki University of Technology, Finland)
Copyright: 2009
Pages: 6
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch100

Purchase

View Functional Dimension Reduction for Chemometrics on the publisher's website for pricing and purchasing information.

Abstract

High dimensional data are becoming more and more common in data analysis. This is especially true in fields that are related to spectrometric data, such as chemometrics. Due to development of more accurate spectrometers one can obtain spectra of thousands of data points. Such a high dimensional data are problematic in machine learning due to increased computational time and the curse of dimensionality (Haykin, 1999; Verleysen & François, 2005; Bengio, Delalleau, & Le Roux, 2006). It is therefore advisable to reduce the dimensionality of the data. In the case of chemometrics, the spectra are usually rather smooth and low on noise, so function fitting is a convenient tool for dimensionality reduction. The fitting is obtained by fixing a set of basis functions and computing the fitting weights according to the least squares error criterion. This article describes a unsupervised method for finding a good function basis that is specifically built to suit the data set at hand. The basis consists of a set of Gaussian functions that are optimized for an accurate fitting. The obtained weights are further scaled using a Delta Test (DT) to improve the prediction performance. Least Squares Support Vector Machine (LS-SVM) model is used for estimation.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom