IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

FPGA-Based Object Detection and Motion Tracking in Micro- and Nanorobotics

FPGA-Based Object Detection and Motion Tracking in Micro- and Nanorobotics
View Sample PDF
Author(s): Claas Diederichs (University of Oldenburg, Germany)and Sergej Fatikow (University of Oldenburg, Germany)
Copyright: 2014
Pages: 11
Source title: Nanotechnology: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-5125-8.ch010

Purchase

View FPGA-Based Object Detection and Motion Tracking in Micro- and Nanorobotics on the publisher's website for pricing and purchasing information.

Abstract

Object-detection and classification is a key task in micro- and nanohandling. The microscopic imaging is often the only available sensing technique to detect information about the positions and orientations of objects. FPGA-based image processing is superior to state of the art PC-based image processing in terms of achievable update rate, latency and jitter. A connected component labeling algorithm is presented and analyzed for its high speed object detection and classification feasibility. The features of connected components are discussed and analyzed for their feasibility with a single-pass connected component labeling approach, focused on principal component analysis-based features. It is shown that an FPGA implementation of the algorithm can be used for high-speed tool tracking as well as object classification inside optical microscopes. Furthermore, it is shown that an FPGA implementation of the algorithm can be used to detect and classify carbon-nanotubes (CNTs) during image acquisition in a scanning electron microscope, allowing fast object detection before the whole image is captured.

Related Content

Wassim Jaber. © 2024. 24 pages.
Hussein A.H. Jaber, Zahraa Saleh, Wassim Jaber, Adnan Badran, Hatem Nasser. © 2024. 17 pages.
Sakshi Garg, Kunal Arora, Sumita Singh, K. Nagarajan. © 2024. 20 pages.
Wassim Jaber. © 2024. 14 pages.
Ray Gutierrez Jr.. © 2024. 22 pages.
Wassim Jaber, Hussein A.H. Jaber, Ramzi Jaber, Zahraa Saleh. © 2024. 16 pages.
Zahraa Saleh, Wassim Jaber, Ali Jaber, Edmond Cheble, Mikhael Bechelany, Akram Hijazi, David Cornu, Ghassan Mahmoud Ibrahim. © 2024. 22 pages.
Body Bottom