IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Forecasting Software Vulnerabilities Using Time-Series Techniques

Forecasting Software Vulnerabilities Using Time-Series Techniques
View Sample PDF
Author(s): Baidyanath Biswas (IIM Lucknow, India)
Copyright: 2019
Pages: 41
Source title: Machine Learning Techniques for Improved Business Analytics
Source Author(s)/Editor(s): Dileep Kumar G. (Adama Science and Technology University, Ethiopia)
DOI: 10.4018/978-1-5225-3534-8.ch007

Purchase

View Forecasting Software Vulnerabilities Using Time-Series Techniques on the publisher's website for pricing and purchasing information.

Abstract

This chapter discusses the concepts of time-series applications and forecasting in the context of information systems security. The primary objective in such formulation is the training of the models followed by efficient prediction. Although economic and financial forecasting problems extensively use time-series, predicting software vulnerabilities is a novel idea. The chapter also provides appropriate guidelines for the implementation and adaptation of univariate time-series for information security. To achieve this, the authors focus on the following techniques: autoregressive (AR), moving average (MA), autoregressive integrated moving average (ARIMA), and exponential smoothing. The analysis considers a unique data set consisting of the publicly exposed software vulnerabilities, available from the U.S. Dept. of Homeland Security. The problem is presented first, followed by a general framework to identify the problem, estimate the best-fit parameters of that model, and conclude with an illustrative example from the above dataset to familiarize readers with the business problem.

Related Content

N. Geethanjali, K. M. Ashifa, Avantika Raina, Jayashree Patil, Rameshwaran Byloppilly, S. Suman Rajest. © 2024. 19 pages.
Praveen Kakada, Muhammed Shafi M. K.. © 2024. 14 pages.
P. S. Venkateswaran, Divya Marupaka, Sachin Parate, Amit Bhanushali, Latha Thammareddi, P. Paramasivan. © 2024. 15 pages.
M. Lishmah Dominic, P. S. Venkateswaran, Latha Thamma Reddi, Sandeep Rangineni, R. Regin, S. Suman Rajest. © 2024. 15 pages.
S. Sivabala, P. Vidyasri. © 2024. 23 pages.
H. Hajra, G. Jayalakshmi. © 2024. 22 pages.
Anusha Thakur. © 2024. 15 pages.
Body Bottom