The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Fall Behavior Recognition Based on Deep Learning and Image Processing
Abstract
Accidental fall detection for the elderly who live alone can minimize the risk of death and injuries. In this article, we present a new fall detection method based on "deep learning and image, where a human body recognition model-DeeperCut is used. First, a camera is used to get the detection source data, and then the video is split into images which can be input into DeeperCut model. The human key point data in the output map and the label of the pictures are used as training data to input into the fall detection neural network. The output model then judges the fall of the subsequent pictures. In addition, the fall detection system is designed and implemented with using Raspberry Pi hardware in a local network environment. The presented method obtains a 100% fall detection rate in the experimental environment. The false positive rate on the test set is around 1.95% which is very low and can be ignored because this will be checked by using SMS, WeChat and other SNS tools to confirm falls. Experimental results show that the proposed fall behavior recognition is effective and feasible to be deployed in home environment.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|