IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Facial Expression Recognition for HCI Applications

Facial Expression Recognition for HCI Applications
View Sample PDF
Author(s): Fadi Dornaika (Institut Géographique National, France)and Bogdan Raducanu (Computer Vision Center, Spain)
Copyright: 2009
Pages: 7
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch095

Purchase

View Facial Expression Recognition for HCI Applications on the publisher's website for pricing and purchasing information.

Abstract

Facial expression plays an important role in cognition of human emotions (Fasel, 2003 & Yeasin, 2006). The recognition of facial expressions in image sequences with significant head movement is a challenging problem. It is required by many applications such as human-computer interaction and computer graphics animation (Cañamero, 2005 & Picard, 2001). To classify expressions in still images many techniques have been proposed such as Neural Nets (Tian, 2001), Gabor wavelets (Bartlett, 2004), and active appearance models (Sung, 2006). Recently, more attention has been given to modeling facial deformation in dynamic scenarios. Still image classifiers use feature vectors related to a single frame to perform classification. Temporal classifiers try to capture the temporal pattern in the sequence of feature vectors related to each frame such as the Hidden Markov Model based methods (Cohen, 2003, Black, 1997 & Rabiner, 1989) and Dynamic Bayesian Networks (Zhang, 2005). The main contributions of the paper are as follows. First, we propose an efficient recognition scheme based on the detection of keyframes in videos where the recognition is performed using a temporal classifier. Second, we use the proposed method for extending the human-machine interaction functionality of a robot whose response is generated according to the user’s recognized facial expression. Our proposed approach has several advantages. First, unlike most expression recognition systems that require a frontal view of the face, our system is viewand texture-independent. Second, its learning phase is simple compared to other techniques (e.g., the Hidden Markov Models and Active Appearance Models), that is, we only need to fit second-order Auto-Regressive models to sequences of facial actions. As a result, even when the imaging conditions change the learned Auto-Regressive models need not to be recomputed. The rest of the paper is organized as follows. Section 2 summarizes our developed appearance-based 3D face tracker that we use to track the 3D head pose as well as the facial actions. Section 3 describes the proposed facial expression recognition based on the detection of keyframes. Section 4 provides some experimental results. Section 5 describes the proposed human-machine interaction application that is based on the developed facial expression recognition scheme.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom