The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Evolutionary Algorithms for Economic Load Dispatch Having Multiple Types of Cost Functions
Abstract
This chapter presents various novel evolutionary algorithms, namely Real Coded Genetic Algorithm (RGA), two variants of Biogeography-Based Optimization (BBO), and three variants of Particle Swarm Optimization (PSO) in order to find the optimal power generation scheduling to simultaneously optimize fuel cost and power loss for solving constrained economic load dispatch problems of all thermal systems, considering multiple fuel operation and valve point effect. The effectiveness of the proposed algorithms is demonstrated in five different ELD problems, considering different constraints such as transmission losses, ramp rate limits, multi-fuel options and valve point loading. Comparative studies are carried out to examine the effectiveness and superiority of the proposed approaches. A comparison of simulation results reveals optimization usefulness of the proposed BBO scheme over other well established population based optimization techniques. It is also found that the convergence characteristics of the BBO algorithm are better than other optimization methods.
Related Content
S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh.
© 2025.
16 pages.
|
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan.
© 2025.
22 pages.
|
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi.
© 2025.
22 pages.
|
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh.
© 2025.
24 pages.
|
U. Vignesh, Arpan Singh Parihar.
© 2025.
34 pages.
|
Sharmistha Dey, Krishan Veer Singh.
© 2025.
20 pages.
|
Kalpana Devi.
© 2025.
26 pages.
|
|
|