IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Evolutionary Algorithms for Economic Load Dispatch Having Multiple Types of Cost Functions

Evolutionary Algorithms for Economic Load Dispatch Having Multiple Types of Cost Functions
View Sample PDF
Author(s): Provas Kumar Roy (Jalpaiguri Government Engineering College, India), Moumita Pradhan (Dr. B. C. Roy Engineering College, India)and Tandra Pal (NIT Durgapur, India)
Copyright: 2016
Pages: 26
Source title: Handbook of Research on Natural Computing for Optimization Problems
Source Author(s)/Editor(s): Jyotsna Kumar Mandal (University of Kalyani, India), Somnath Mukhopadhyay (Calcutta Business School, India)and Tandra Pal (National Institute of Technology Durgapur, India)
DOI: 10.4018/978-1-5225-0058-2.ch009

Purchase

View Evolutionary Algorithms for Economic Load Dispatch Having Multiple Types of Cost Functions on the publisher's website for pricing and purchasing information.

Abstract

This chapter presents various novel evolutionary algorithms, namely Real Coded Genetic Algorithm (RGA), two variants of Biogeography-Based Optimization (BBO), and three variants of Particle Swarm Optimization (PSO) in order to find the optimal power generation scheduling to simultaneously optimize fuel cost and power loss for solving constrained economic load dispatch problems of all thermal systems, considering multiple fuel operation and valve point effect. The effectiveness of the proposed algorithms is demonstrated in five different ELD problems, considering different constraints such as transmission losses, ramp rate limits, multi-fuel options and valve point loading. Comparative studies are carried out to examine the effectiveness and superiority of the proposed approaches. A comparison of simulation results reveals optimization usefulness of the proposed BBO scheme over other well established population based optimization techniques. It is also found that the convergence characteristics of the BBO algorithm are better than other optimization methods.

Related Content

S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh. © 2025. 16 pages.
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan. © 2025. 22 pages.
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi. © 2025. 22 pages.
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh. © 2025. 24 pages.
U. Vignesh, Arpan Singh Parihar. © 2025. 34 pages.
Sharmistha Dey, Krishan Veer Singh. © 2025. 20 pages.
Kalpana Devi. © 2025. 26 pages.
Body Bottom