The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Enhanced Footsteps Generation Method for Walking Robots Based on Convolutional Neural Networks
Abstract
In this chapter, the problem of finding a suitable foothold for a bipedal walking robot is studied. There are a number of gait generation algorithms that rely on having a set of obstacle-free regions where the robot can step to and there are a number of algorithms for generating these regions. This study breaches the gap between these algorithms, providing a way to quickly check if a given obstacle free region is accessible for foot placement. The proposed approach is based on the use of a classifier, constructed as a convolutional neural network. The study discusses the training dataset generation, including datasets with uncertainty related to the shapes of the obstacle-free regions. Training results for a number of different datasets and different hyperparameter choices are presented and showed robustness of the proposed network design both to different hyperparameter choices as well as to the changes in the training dataset.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|