IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Distributed Representation of Compositional Structure

Distributed Representation of Compositional Structure
View Sample PDF
Author(s): Simon D. Levy (Washington and Lee University, USA)
Copyright: 2009
Pages: 6
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch078

Purchase

View Distributed Representation of Compositional Structure on the publisher's website for pricing and purchasing information.

Abstract

AI models are often categorized in terms of the connectionist vs. symbolic distinction. In addition to being descriptively unhelpful, these terms are also typically conflated with a host of issues that may have nothing to do with the commitments entailed by a particular model. A more useful distinction among cognitive representations asks whether they are local or distributed (van Gelder 1999). Traditional symbol systems (grammar, predicate calculus) use local representations: a given symbol has no internal content and is located at a particular address in memory. Although well understood and successful in a number of domains, traditional representations suffer from brittleness. The number of possible items to be represented is fixed at some arbitrary hard limit, and a single corrupt memory location or broken pointer can wreck an entire structure. In a distributed representation, on the other hand, each entity is represented by a pattern of activity distributed over many computing elements, and each computing element is involved in representing many different entities (Hinton 1984). Such representations have a number of properties that make them attractive for knowledge representation (McClelland, Rumelhart, & Hinton 1986): they are robust to noise, degrade gracefully, and support graded comparison through distance metrics. These properties enable fast associative memory and efficient comparison of entire structures without unpacking the structures into their component parts. This article provides an overview of distributed representations, setting the approach in its historical context. The two essential operations necessary for building distributed representation of structures – binding and bundling – are described. We present example applications of each model, and conclude by discussing the current state of the art.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom