IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Development of the Enhanced Piece-Wise Linear Neural Network Algorithm

Development of the Enhanced Piece-Wise Linear Neural Network Algorithm
View Sample PDF
Author(s): Veronica K. Chan (Faculty of Engineering and Applied Science, University of Regina, Canada)and Christine W. Chan (Faculty of Engineering and Applied Science, University of Regina, Canada)
Copyright: 2022
Pages: 23
Source title: Research Anthology on Artificial Neural Network Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-2408-7.ch013

Purchase

View Development of the Enhanced Piece-Wise Linear Neural Network Algorithm on the publisher's website for pricing and purchasing information.

Abstract

This chapter discusses development, application, and enhancement of a decomposition neural network rule extraction algorithm for nonlinear regression problems. The dual objectives of developing the algorithms are (1) to generate good predictive models comparable in performance to the original artificial neural network (ANN) models and (2) to “open up” the black box of a neural network model and provide explicit information in the form of rules that are expressed as linear equations. The enhanced PWL-ANN algorithm improves upon the PWL-ANN algorithm because it can locate more than two breakpoints and better approximate the hidden sigmoid activation functions of the ANN. Comparison of the results produced by the two versions of the PWL-ANN algorithm showed that the enhanced PWL-ANN models provide higher predictive accuracies and improved fidelities compared to the originally trained ANN models than the PWL-ANN models.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom