IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Developing and Using Computational Frameworks to Conduct Numerical Analysis and Calculate Temperature Profiles and to Classify Breast Abnormalities

Developing and Using Computational Frameworks to Conduct Numerical Analysis and Calculate Temperature Profiles and to Classify Breast Abnormalities
View Sample PDF
Author(s): Kamila Fernanda F. da C. Queiroz (Federal Institute of Rio Grande do Norte, Brazil), Marcus Costa de Araújo (Universidade Federal de Pernambuco, Brazil), Nadja Accioly Espíndola (Universidade Federal de Pernambuco, Brazil), Ladjane C. Santos (Federal Institute of Sergipe, Brazil), Francisco G. S. Santos (Universidade Federal de Pernambuco, Brazil) and Rita de Cássia Fernandes de Lima (DEMEC, Federal University of Pernambuco, Brazil)
Copyright: 2021
Pages: 20
Source title: Biomedical Computing for Breast Cancer Detection and Diagnosis
Source Author(s)/Editor(s): Wellington Pinheiro dos Santos (Universidade Federal de Pernambuco, Brazil), Washington Wagner Azevedo da Silva (Universidade Federal de Pernambuco, Brazil) and Maira Araujo de Santana (Universidade Federal de Pernambuco, Brazil)
DOI: 10.4018/978-1-7998-3456-4.ch011

Purchase


Abstract

In this chapter, computational tools that have been designed to analyze and classify infrared (IR) images will be presented. The function of such tools is to interconnect in a user-friendly way the algorithms that are used to map temperatures and to classify some breast pathologies. One of these performs texture mapping using IR breast images to relate temperatures measured to the points over the substitute tridimensional geometry mesh. Another computer-aided diagnosis (CAD) tool was adapted so that it could be used to evaluate individual patients. This methodology will be used when the computational framework approach for classification is described. Finally, graphical interfaces and their functionalities will be presented and explained. Some case studies will be presented in order to verify whether or not the computational classification framework is effective.

Related Content

David Edson Ribeiro, Valter Augusto de Freitas Barbosa, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 15 pages.
Juliana Carneiro Gomes, Maíra Araújo de Santana, Clarisse Lins de Lima, Ricardo Emmanuel de Souza, Wellington Pinheiro dos Santos. © 2021. 12 pages.
Maíra Araújo de Santana, Jessiane Mônica Silva Pereira, Clarisse Lins de Lima, Maria Beatriz Jacinto de Almeida, José Filipe Silva de Andrade, Thifany Ketuli Silva de Souza, Rita de Cássia Fernandes de Lima, Wellington Pinheiro dos Santos. © 2021. 19 pages.
Jessiane Mônica Silva Pereira, Maíra Araújo de Santana, Clarisse Lins de Lima, Rita de Cássia Fernandes de Lima, Sidney Marlon Lopes de Lima, Wellington Pinheiro dos Santos. © 2021. 25 pages.
Adriel dos Santos Araujo, Roger Resmini, Maira Beatriz Hernandez Moran, Milena Henriques de Sousa Issa, Aura Conci. © 2021. 35 pages.
Abir Baâzaoui, Walid Barhoumi. © 2021. 21 pages.
Marcus Costa de Araújo, Luciete Alves Bezerra, Kamila Fernanda Ferreira da Cunha Queiroz, Nadja A. Espíndola, Ladjane Coelho dos Santos, Francisco George S. Santos, Rita de Cássia Fernandes de Lima. © 2021. 44 pages.
Body Bottom