IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Detection of Drive-by Download Attacks Using Machine Learning Approach

Detection of Drive-by Download Attacks Using Machine Learning Approach
View Sample PDF
Author(s): Monther Aldwairi (Jordan University of Science and Technology, Department of Network Engineering and Security, Irbid, Jordan), Musaab Hasan (Zayed University, College of Technological Innovation, Abu Dhabi, UAE)and Zayed Balbahaith (Zayed University, College of Technological Innovation, Abu Dhabi, UAE)
Copyright: 2020
Pages: 14
Source title: Cognitive Analytics: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-2460-2.ch082

Purchase

View Detection of Drive-by Download Attacks Using Machine Learning Approach on the publisher's website for pricing and purchasing information.

Abstract

Drive-by download refers to attacks that automatically download malwares to user's computer without his knowledge or consent. This type of attack is accomplished by exploiting web browsers and plugins vulnerabilities. The damage may include data leakage leading to financial loss. Traditional antivirus and intrusion detection systems are not efficient against such attacks. Researchers proposed plenty of detection approaches mostly passive blacklisting. However, a few proposed dynamic classification techniques, which suffer from clear shortcomings. In this paper, we propose a novel approach to detect drive-by download infected web pages based on extracted features from their source code. We test 23 different machine learning classifiers using data set of 5435 webpages and based on the detection accuracy we selected the top five to build our detection model. The approach is expected to serve as a base for implementing and developing anti drive-by download programs. We develop a graphical user interface program to allow the end user to examine the URL before visiting the website. The Bagged Trees classifier exhibited the highest accuracy of 90.1% and reported 96.24% true positive and 26.07% false positive rate.

Related Content

Jaime Salvador, Zoila Ruiz, Jose Garcia-Rodriguez. © 2020. 12 pages.
Stavros Pitoglou. © 2020. 11 pages.
Mette L. Baran. © 2020. 13 pages.
Yingxu Wang, Victor Raskin, Julia M. Rayz, George Baciu, Aladdin Ayesh, Fumio Mizoguchi, Shusaku Tsumoto, Dilip Patel, Newton Howard. © 2020. 15 pages.
Yingxu Wang, Lotfi A. Zadeh, Bernard Widrow, Newton Howard, Françoise Beaufays, George Baciu, D. Frank Hsu, Guiming Luo, Fumio Mizoguchi, Shushma Patel, Victor Raskin, Shusaku Tsumoto, Wei Wei, Du Zhang. © 2020. 18 pages.
Nayem Rahman. © 2020. 24 pages.
Amir Manzoor. © 2020. 27 pages.
Body Bottom