IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Detection of Blood-Related Diseases Using Deep Neural Nets

Detection of Blood-Related Diseases Using Deep Neural Nets
View Sample PDF
Author(s): Rajithkumar B. K. (R. V. College of Engineering, India), Shilpa D. R. (R. V. College of Engineering, India)and Uma B. V. (R. V. College of Engineering, India)
Copyright: 2019
Pages: 15
Source title: Handbook of Research on Deep Learning Innovations and Trends
Source Author(s)/Editor(s): Aboul Ella Hassanien (Cairo University, Egypt), Ashraf Darwish (Helwan University, Egypt)and Chiranji Lal Chowdhary (VIT University, India)
DOI: 10.4018/978-1-5225-7862-8.ch001

Purchase

View Detection of Blood-Related Diseases Using Deep Neural Nets on the publisher's website for pricing and purchasing information.

Abstract

Image processing offers medical diagnosis and it overcomes the shortcomings faced by traditional laboratory methods with the help of intelligent algorithms. It is also useful for remote quality control and consultations. As machine learning is stepping into biomedical engineering, there is a huge demand for devices which are intelligent and accurate enough to target the diseases. The platelet count in a blood sample can be done by extrapolating the number of platelets counted in the blood smear. Deep neural nets use multiple layers of filtering and automated feature extraction and detection and can overcome the hurdle of devising complex algorithms to extract features for each type of disease. So, this chapter deals with the usage of deep neural networks for the image classification and platelets count. The method of using deep neural nets has increased the accuracy of detecting the disease and greater efficiency compared to traditional image processing techniques. The method can be further expanded to other forms of diseases which can be detected through blood samples.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom