IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Design and Implementation of BIOLOID Humanoid Robot

Design and Implementation of BIOLOID Humanoid Robot
View Sample PDF
Author(s): Hilberto Ayala (Alabama A&M University, USA)and Yujian Fu (Alabama A&M University, USA)
Copyright: 2017
Pages: 17
Source title: Artificial Intelligence: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-5225-1759-7.ch009

Purchase

View Design and Implementation of BIOLOID Humanoid Robot on the publisher's website for pricing and purchasing information.

Abstract

Research in humanoid robot design and implementation is quite challenging due to the complexity of the system and multiple objects involved. Stability, gait generation, navigation and object detection and recognition are all key factors in the humanoid robot design. Researchers in humanoid robot design has put dramatic efforts on one aspect and made assumption on many other aspects. Humanoid robot research involves challenge issues of stability of motion, body movement, navigation, in addition to the issues of path generation, object detection, collision avoidance in the wheeled robots. Rooted from the previous experimental study of wheeled robotics systems, the research project of BIOLOID humanoid robot was started on Fall 2013 and supported by Title III Strengthening Grant Program (HBGI) (DAAD17-02-C-0113). In this paper, we give an overview of the project design and implementation of BIOLOID humanoid robot, including hardware architecture, firmware design and device management, in an overall perspective research work of the motion planning of humanoid robots. In addition, a wide discussion of the issues we faced and challenges of research work is presented, with the results of the current on-going progress. This work will cover the overall hardware architecture, model based system design and behavior analysis using a systematic approach. The work is implemented on a soccer game scenario with a goalie and an offender role. This project has demonstrated a successful development process of collaborative humanoid robotics on a complex research and education platform of BIOLOID using a software engineering approach.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom