The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Deep Reinforcement Learning for Optimization
Abstract
Deep reinforcement learning (DRL) has transformed the field of artificial intelligence (AI) especially after the success of Google DeepMind. This branch of machine learning epitomizes a step toward building autonomous systems by understanding of the visual world. Deep reinforcement learning (RL) is currently applied to different sorts of problems that were previously obstinate. In this chapter, at first, the authors started with an introduction of the general field of RL and Markov decision process (MDP). Then, they clarified the common DRL framework and the necessary components RL settings. Moreover, they analyzed the stochastic gradient descent (SGD)-based optimizers such as ADAM and a non-specific multi-policy selection mechanism in a multi-objective Markov decision process. In this chapter, the authors also included the comparison for different Deep Q networks. In conclusion, they describe several challenges and trends in research within the deep reinforcement learning field.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|