The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Deep Clustering
Abstract
Clustering is an unsupervised technique used in various application, namely machine learning, image segmentation, social network analysis, health analytics, and financial analysis. It is a task of grouping similar objects together and dissimilar objects in different group. The quality of the cluster relies on two factors: distance metrics and data representation. Deep learning is a new field of machine learning research that has been introduced to move machine learning closer to artificial intelligence. Learning using deep network provides multiple layers of representation that helps to understand images, sound, and text. In this chapter, the need for deep network in clustering, various architecture, and algorithms for unsupervised learning is discussed.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|