The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Congestion Management Using Hybrid Particle Swarm Optimization Technique
Abstract
This paper proposes the Hybrid Particle Swarm Optimization (HPSO) method for solving congestion management problems in a pool based electricity market. Congestion may occur due to lack of coordination between generation and transmission utilities or as a result of unexpected contingencies. In the proposed method, the control strategies to limit line loading to the security limits are by means of minimum adjustments in generations from the initial market clearing values. Embedding Evolutionary Programming (EP) technique in Particle Swarm Optimization (PSO) algorithm improves the global searching capability of PSO and also prevents the premature convergence in local minima. A number of functional operating constraints, such as branch flow limits and load bus voltage magnitude limits are included as penalties in the fitness function. Numerical results on three test systems namely modified IEEE 14 Bus, IEEE 30 Bus and IEEE 118 Bus systems are presented and the results are compared with PSO and EP approaches in order to demonstrate its performance.
Related Content
G. Sowmya, R. Sridevi, K. S. Sadasiva Rao, Sri Ganesh Shiramshetty.
© 2025.
36 pages.
|
Srinidhi Vasan.
© 2025.
20 pages.
|
Arul Kumar Natarajan, Yash Desai, Pravin R. Kshirsagar, Kamal Upreti, Tan Kuan Tak.
© 2025.
26 pages.
|
R. Leisha, Katelyn Jade Medows, Michael Moses Thiruthuvanathan, S. Ravindra Babu, Prakash Divakaran, Vandana Mishra Chaturvedi.
© 2025.
40 pages.
|
Rituraj Jain, Kumar J. Parmar, Kushal Gaddamwar, Damodharan Palaniappan, T. Premavathi, Yatharth Srivastava.
© 2025.
32 pages.
|
Anya Behera, A. Vedashree, M. Rupesh Kumar, Kamal Upreti.
© 2025.
30 pages.
|
Neha Bagga, Sheetal Kalra, Parminder Kaur.
© 2025.
30 pages.
|
|
|