The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Complex-Valued Neural Network and Inverse Problems
Abstract
Network inversion solves inverse problems to estimate cause from result using a multilayer neural network. The original network inversion has been applied to usual multilayer neural networks with real-valued inputs and outputs. The solution by a neural network with complex-valued inputs and outputs is necessary for general inverse problems with complex numbers. In this chapter, we introduce the complex-valued network inversion method to solve inverse problems with complex numbers. In general, difficulties attributable to the ill-posedness of inverse problems appear. Regularization is used to solve this ill-posedness by adding some conditions to the solution. In this chapter, we also explain regularization for complex-valued network inversion.
Related Content
Arunaben Prahladbhai Gurjar, Shitalben Bhagubhai Patel.
© 2022.
30 pages.
|
Meghna Babubhai Patel, Jagruti N. Patel, Upasana M. Bhilota.
© 2022.
10 pages.
|
Vo Ngoc Phu, Vo Thi Ngoc Tran.
© 2022.
27 pages.
|
Steven Walczak.
© 2022.
17 pages.
|
Priyanka P. Patel, Amit R. Thakkar.
© 2022.
26 pages.
|
Vo Ngoc Phu, Vo Thi Ngoc Tran.
© 2022.
34 pages.
|
Sarat Chandra Nayak, Subhranginee Das, Bijan Bihari Misra.
© 2022.
20 pages.
|
|
|