IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Comparison of Cooling Schedules for Simulated Annealing

A Comparison of Cooling Schedules for Simulated Annealing
View Sample PDF
Author(s): José Fernando Díaz Martín (University of Deusto, Spain)and Jesús M. Riaño Sierra (University of Deusto, Spain)
Copyright: 2009
Pages: 9
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch053

Purchase

View A Comparison of Cooling Schedules for Simulated Annealing on the publisher's website for pricing and purchasing information.

Abstract

Simulated annealing is one of the most important metaheuristics or general-purpose algorithms of combinatorial optimization, whose properties of convergence towards high quality solutions are well known, although with a high computational cost. Due to that, it has been produced a quite number of research works on the convergence speed of the algorithm, especially on the treatment of the temperature parameter, which is known as cooling schedule or strategy. In this article we make a comparative study of the performance of simulated annealing using the most important cooling strategies (Kirkpatrick, S., Gelatt, C.D. & Vecchi, M.P., 1983), (Dowsland, K.A., 2001), (Luke, B.T., 1995), (Locatelli, M., 2000). Two classical problems of combinatorial optimization are used in the practical analysis of the algorithm: the travelling salesman problem and the quadratic assignment problem.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom