Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Combination of Forecasts in Data Mining

Combination of Forecasts in Data Mining
View Sample PDF
Author(s): Chi Kin Chan (The Hong Kong Polytechnic University, Hong Kong)
Copyright: 2009
Pages: 5
Source title: Encyclopedia of Information Science and Technology, Second Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-60566-026-4.ch096


View Combination of Forecasts in Data Mining on the publisher's website for pricing and purchasing information.


The traditional approach to forecasting involves choosing the forecasting method judged most appropriate of the available methods and applying it to some specific situations. The choice of a method depends upon the characteristics of the series and the type of application. The rationale behind such an approach is the notion that a “best” method exists and can be identified. Further that the “best” method for the past will continue to be the best for the future. An alternative to the traditional approach is to aggregate information from different forecasting methods by aggregating forecasts. This eliminates the problem of having to select a single method and rely exclusively on its forecasts. Considerable literature has accumulated over the years regarding the combination of forecasts. The primary conclusion of this line of research is that combining multiple forecasts leads to increased forecast accuracy. This has been the result whether the forecasts are judgmental or statistical, econometric or extrapolation. Furthermore, in many cases one can make dramatic performance improvements by simply averaging the forecasts.

Related Content

Christine Kosmopoulos. © 2022. 22 pages.
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh. © 2022. 21 pages.
Rajkumari Sofia Devi, Ch. Ibohal Singh. © 2022. 21 pages.
Ida Fajar Priyanto. © 2022. 16 pages.
Murtala Ismail Adakawa. © 2022. 27 pages.
Shimelis Getu Assefa. © 2022. 17 pages.
Angela Y. Ford, Daniel Gelaw Alemneh. © 2022. 22 pages.
Body Bottom