IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Clustering Algorithm for Arbitrary Data Sets

Clustering Algorithm for Arbitrary Data Sets
View Sample PDF
Author(s): Yu-Chen Song (Inner Mongolia University of Science and Technology, China)and Hai-Dong Meng (Inner Mongolia University of Science and Technology, China)
Copyright: 2009
Pages: 7
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch046

Purchase

View Clustering Algorithm for Arbitrary Data Sets on the publisher's website for pricing and purchasing information.

Abstract

Clustering analysis is an intrinsic component of numerous applications, including pattern recognition, life sciences, image processing, web data analysis, earth sciences, and climate research. As an example, consider the biology domain. In any living cell that undergoes a biological process, different subsets of its genes are expressed in different stages of the process. To facilitate a deeper understanding of these processes, a clustering algorithm was developed (Ben- Dor, Shamir, & Yakhini, 1999) that enabled detailed analysis of gene expression data. Recent advances in proteomics technologies, such as two-hybrid, phage display and mass spectrometry, have enabled the creation of detailed maps of biomolecular interaction networks. To further understanding in this area, a clustering mechanism that detects densely connected regions in large protein-protein interaction networks that may represent molecular complexes was constructed (Bader & Hogue, 2003). In the interpretation of remote sensing images, clustering algorithms (Sander, Ester, Kriegel, & Xu, 1998) have been employed to recognize and understand the content of such images. In the management of web directories, document annotation is an important task. Given a predefined taxonomy, the objective is to identify a category related to the content of an unclassified document. Self-Organizing Maps have been harnessed to influence the learning process with knowledge encoded within a taxonomy (Adami, Avesani, & Sona, 2005). Earth scientists are interested in discovering areas of the ocean that have a demonstrable effect on climatic events on land, and the SNN clustering technique (Ertöz, Steinbach, & Kumar, 2002) is one example of a technique that has been adopted in this domain. Also, scientists have developed climate indices, which are time series that summarize the behavior of selected regions of the Earth’s oceans and atmosphere. Clustering techniques have proved crucial in the production of climate indices (Steinbach, Tan, Kumar, Klooster, & Potter, 2003). In many application domains, clusters of data are of arbitrary shape, size and density, and the number of clusters is unknown. In such scenarios, traditional clustering algorithms, including partitioning methods, hierarchical methods, density-based methods and gridbased methods, cannot identify clusters efficiently or accurately. Obviously, this is a critical limitation. In the following sections, a number of clustering methods are presented and discussed, after which the design of an algorithm based on Density and Density-reachable (CADD) is presented. CADD seeks to remedy some of the deficiencies of classical clustering approaches by robustly clustering data that is of arbitrary shape, size, and density in an effective and efficient manner.

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom