IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Class Discovery, Comparison, and Prediction Methods for RNA-Seq Data

Class Discovery, Comparison, and Prediction Methods for RNA-Seq Data
View Sample PDF
Author(s): Ahu Cephe (Erciyes University, Turkey), Necla Koçhan (İzmir Biomedicine and Genome Center, Turkey), Gözde Ertürk Zararsız (Erciyes University, Turkey), Vahap Eldem (İstanbul University, Turkey)and Gökmen Zararsız (Erciyes University, Turkey)
Copyright: 2024
Pages: 25
Source title: Research Anthology on Bioinformatics, Genomics, and Computational Biology
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/979-8-3693-3026-5.ch021

Purchase

View Class Discovery, Comparison, and Prediction Methods for RNA-Seq Data on the publisher's website for pricing and purchasing information.

Abstract

Gene-expression studies have been studied using microarray data for many years, and numerous methods have been developed for these data. However, microarray technology is old technology and has some limitations. RNA-sequencing (RNA-seq) is a new transcriptomics technique capable of coping with these limitations, using the capabilities of new generation sequencing technologies, and performing operations quickly and cheaply based on the principle of high-throughput sequencing technology. Compared to microarrays, RNA-seq offers several advantages: (1) having less noisy data, (2) being able to detect new transcripts and coding regions, (3) not requiring pre-determination of the transcriptomes of interest. However, RNA-seq data has several features that pose statistical challenges. Thus, one cannot directly use methods developed for microarray analyses, which has a discrete and overdispersed nature of data, quite different from the continuous data structure of microarrays. This article aims to provide an overview and practical guidance to researchers working with RNA-seq data for different purposes.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom