The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
CEO Tenure and Debt: An Artificial Higher Order Neural Network Approach
Abstract
This chapter proposes nonlinear models using artificial neural network models to study the relationship between chief elected official (CEO) tenure and debt. Using Higher Order Neural Network (HONN) simulator, this study analyzes debt of the municipalities as a function of population and CEO tenure, and compares the results with that from SAS. The linear models show that CEO tenure and the amount of debt vary inversely. Specifically, a longer length of CEO tenure leads to a decrease in debt, while a shorter tenure leads to an increase in debt. This chapter shows nonlinear model generated from HONN out performs linear models by 1%. The results from both models reveal that CEO tenure is negatively associated with the level of debt in local governments.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|