IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Carbon Vacancy Ordered Non-Stoichiometric ZrC0.6: Synthesis, Characterization and Oxidation at Low Temperature

Carbon Vacancy Ordered Non-Stoichiometric ZrC0.6: Synthesis, Characterization and Oxidation at Low Temperature
View Sample PDF
Author(s): Wentao Hu (Yanshan University, China), Yongjun Tian (Yanshan University, China)and Zhongyuan Liu (Yanshan University, China)
Copyright: 2014
Pages: 23
Source title: Nanotechnology: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-5125-8.ch031

Purchase


Abstract

The starting nanopowders of non-stoichiometric zirconium carbide (ZrCx) were fabricated via milling Zr powders in toluene for different dwell times. The carbon content was determined to depend on the milling time and the used amount of toluene. The bulk non-stoichiometric ZrCx with different x were prepared by spark plasma sintering of the obtained ZrCx nanopowders. The microstructural features of a sintered ZrC0.6 sample were investigated via the measurements of XRD, TEM, and HRTEM. It was found that the carbon vacancies have an ordering arrangement in C sublattice, forming a Zr2C-type cubic superstructural phase with space group of . Moreover, it was observed that the superstructural phase exists in nano-domains with an average size of ~30 nm owing to the ordering length in nanoscale. During the heating treatment in air, it was recognized that the diffusion of oxygen atoms is significantly facilitated through the ordered carbon vacancies. For the heating treatment at low temperature (<300°C), the oxygen atoms diffuse easily into and occupy the ordered carbon vacancies, forming the oxy-carbide of ZrC0.6O0.4 with ordered oxygen atoms. At the heating temperature higher than 350°C an amorphous layer of ZrC0.6Oy>0.4 was identified to be formed due to the diffusion of superfluous oxygen atoms into Zr-tetrahedral centers. Inside the amorphous layer, the metastable tetragonal zirconia nanocrystals are recognized to be gradually developed.

Related Content

Wassim Jaber. © 2024. 24 pages.
Hussein A.H. Jaber, Zahraa Saleh, Wassim Jaber, Adnan Badran, Hatem Nasser. © 2024. 17 pages.
Sakshi Garg, Kunal Arora, Sumita Singh, K. Nagarajan. © 2024. 20 pages.
Wassim Jaber. © 2024. 14 pages.
Ray Gutierrez Jr.. © 2024. 22 pages.
Wassim Jaber, Hussein A.H. Jaber, Ramzi Jaber, Zahraa Saleh. © 2024. 16 pages.
Zahraa Saleh, Wassim Jaber, Ali Jaber, Edmond Cheble, Mikhael Bechelany, Akram Hijazi, David Cornu, Ghassan Mahmoud Ibrahim. © 2024. 22 pages.
Body Bottom