IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Cancer Classification From DNA Microarray Using Genetic Algorithms and Case-Based Reasoning

Cancer Classification From DNA Microarray Using Genetic Algorithms and Case-Based Reasoning
View Sample PDF
Author(s): Lilybert Machacha (Botho University, Gaborone, Botswana)and Prabir Bhattacharya (Concordia University, Canada)
Copyright: 2024
Pages: 22
Source title: Research Anthology on Bioinformatics, Genomics, and Computational Biology
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/979-8-3693-3026-5.ch018

Purchase

View Cancer Classification From DNA Microarray Using Genetic Algorithms and Case-Based Reasoning on the publisher's website for pricing and purchasing information.

Abstract

There are many similarities in the symptoms of several types of cancer and that makes it sometimes difficult for the physicians to do an accurate diagnosis. In addition, it is a technical challenge to classify accurately the cancer cells in order to differentiate one type of cancer from another. The DNA microarray technique (also called the DNA chip) has been used in the past for the classification of cancer but it generates a large volume of noisy data that has many features, and is difficult to analyze directly. This paper proposes a new method, combining the genetic algorithm, case-based reasoning, and the k-nearest neighbor classifier, which improves the performance of the classification considerably. The authors have also used the well-known Mahalanobis distance of multivariate statistics as a similarity measure that improves the accuracy. A case-based classifier approach together with the genetic algorithm has never been applied before for the classification of cancer, same with the application of the Mahalanobis distance. Thus, the proposed approach is a novel method for the cancer classification. Furthermore, the results from the proposed method show considerably better performance than other algorithms. Experiments were done on several benchmark datasets such as the leukemia dataset, the lymphoma dataset, ovarian cancer dataset, and breast cancer dataset.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom