Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Building Educational Technology Partnerships through Participatory Design

Building Educational Technology Partnerships through Participatory Design
View Sample PDF
Author(s): John M. Carroll (The Pennsylvania State University, USA)
Copyright: 2009
Pages: 5
Source title: Encyclopedia of Information Science and Technology, Second Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-60566-026-4.ch068


View Building Educational Technology Partnerships through Participatory Design on the publisher's website for pricing and purchasing information.


Educational technology provides many examples of how efficient software development and deployment is not enough. Teachers work in a complex and dynamic context in which measurable objectives and underlying values collide on a daily basis. Traditionally, teachers work in isolation from their peers; individual teachers have well-established personal practices and philosophies of education. Teachers have enormous discretion with respect to what goes on in their classrooms, yet are also routinely interrogated by supervisors, by parents and other community members, and by educational bureaucracies. This has led to an abiding tension in the culture of schools: Teachers’ innovative practices are often not adequately acknowledged or valued, and at the same time, teachers often passively resist school reforms that are imposed top-down. Technology is a particularly problematic element in the culture of schools. The isolation and discretion of the teacher’s work environment requires that technology for classroom use be highly appropriate and reliable. Yet it is generally assumed that teachers are to be trained on new technologies, not asked to define what those technologies should be. From the teacher’s standpoint, classroom technology often is itself the problem, not the solution. This culture of technologydevelopment in the schools has been singularly ineffective—film and radio in the 1920s, television in the 1950s, and computer-assisted instruction in the 1980s, among others, have been notable failures (Tyack & Cuban, 1995). An alternative to merely efficient technology development is participatory design, the inclusion of users within a development team such that they actively help in setting design goals and planning prototypes. This approach was pioneered, and has been widely employed, in Europe since the 1970s, and now consists of a well-articulated and differentiated set of engineering methods in use worldwide (Carroll, 2000; Clement & Van den Besselaar, 1993; Muller, 2003; Muller, Haslwanter, & Dayton, 1997; Rosson & Carroll, 2002). In 1994, a design collaboration was formed between Virginia Tech and the public schools of Montgomery County, Virginia. The objective was to develop and investigate a high-quality communications infrastructure to support collaborative science learning. Montgomery County is located in the rural Appalachian region of southwestern Virginia. In March 2000, one of its high schools was listed among the top 100 in the US by Newsweek magazine. However, in others, physics is only offered every other year and to classes of only three to five students. The initial vision was to give students in this diverse and dispersed school district access to peers through networked collaboration. We felt it was critical for the teachers to contribute as collaborators in design analysis, implementation, deployment, testing, and refinement, and as leaders in the development of courseware and classroom activities that would exploit the software. For a classroom-technology partnership to succeed, the university researchers must eventually fade and leave the teachers to maintain and develop its achievements. In the end, the technology-development goals of this project were achieved, though this is not the topic of this paper (Isenhour, Carroll, Neale, Rosson, & Dunlap, 2000).

Related Content

Christine Kosmopoulos. © 2022. 22 pages.
Melkamu Beyene, Solomon Mekonnen Tekle, Daniel Gelaw Alemneh. © 2022. 21 pages.
Rajkumari Sofia Devi, Ch. Ibohal Singh. © 2022. 21 pages.
Ida Fajar Priyanto. © 2022. 16 pages.
Murtala Ismail Adakawa. © 2022. 27 pages.
Shimelis Getu Assefa. © 2022. 17 pages.
Angela Y. Ford, Daniel Gelaw Alemneh. © 2022. 22 pages.
Body Bottom