The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Brain Tumor Detection Based on Multilevel 2D Histogram Image Segmentation Using DEWO Optimization Algorithm
Abstract
Brain tumor detection from magnetic resonance (MR)images is a tedious task but vital for early prediction of the disease which until now is solely based on the experience of medical practitioners. Multilevel image segmentation is a computationally simple and efficient approach for segmenting brain MR images. Conventional image segmentation does not consider the spatial correlation of image pixels and lacks better post-filtering efficiency. This study presents a Renyi entropy-based multilevel image segmentation approach using a combination of differential evolution and whale optimization algorithms (DEWO) to detect brain tumors. Further, to validate the efficiency of the proposed hybrid algorithm, it is compared with some prominent metaheuristic algorithms in recent past using between-class variance and the Tsallis entropy functions. The proposed hybrid algorithm for image segmentation is able to achieve better results than all the other metaheuristic algorithms in every entropy-based segmentation performed on brain MR images.
Related Content
Aatif Jamshed, Pawan Singh Mehra, Debabrata Samanta, Tanaya Gupta, Bharat Bhardwaj.
© 2025.
28 pages.
|
Prachi Pundhir, Shaili Gupta.
© 2025.
34 pages.
|
Divya Upadhyay, Misha Kakkar.
© 2025.
14 pages.
|
Pranshu Saxena, Sanjay Kumar Singh, Gaurav Srivastav, Rashid Mamoon.
© 2025.
44 pages.
|
Adamya Gaur.
© 2025.
26 pages.
|
Rhythm Kulshrestha.
© 2025.
20 pages.
|
Sahil Aggarwal, Ruchi Jain, Aayush Agarwal, Sandeep Saxena, A. K. Haghi.
© 2025.
16 pages.
|
|
|