IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Best Practices of Feature Selection in Multi-Omics Data

Best Practices of Feature Selection in Multi-Omics Data
View Sample PDF
Author(s): Funda Ipekten (Erciyes University, Turkey), Gözde Ertürk Zararsız (Erciyes University, Turkey), Halef Okan Doğan (Cumhuriyet University, Turkey), Vahap Eldem (Istanbul University, Turkey)and Gökmen Zararsız (Erciyes University, Turkey)
Copyright: 2024
Pages: 16
Source title: Research Anthology on Bioinformatics, Genomics, and Computational Biology
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/979-8-3693-3026-5.ch014

Purchase

View Best Practices of Feature Selection in Multi-Omics Data on the publisher's website for pricing and purchasing information.

Abstract

With the recent advances in molecular biology techniques such as next-generation sequencing, mass-spectrometry, etc., a large omic data is produced. Using such data, the expression levels of thousands of molecular features (genes, proteins, metabolites, etc.) can be quantified and associated with diseases. The fact that multiple omics data contains different types of data and the number of analyzed variables increases the complexity of the models created with machine learning methods. In addition, due to many variables, the investigation of molecular variables associated with diseases is very costly. Therefore, selecting the informative and disease-related molecular features is applicable before model training and evaluation. This feature selection step is essential for obtaining accurate and generalizable models in minimum time with minimum cost. Some current methods used for feature selection are as follows: recursive feature elimination, information gain, minimum redundancy maximum relevance (mRMR), boruta, altmann, and lasso.

Related Content

Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos. © 2025. 22 pages.
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri. © 2025. 46 pages.
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo. © 2025. 38 pages.
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi. © 2025. 30 pages.
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi. © 2025. 32 pages.
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi. © 2025. 40 pages.
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi. © 2025. 28 pages.
Body Bottom