Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Bayesian Machine Learning

Bayesian Machine Learning
View Sample PDF
Author(s): Eitel J.M. Lauria (Marist College, USA)
Copyright: 2005
Pages: 7
Source title: Encyclopedia of Information Science and Technology, First Edition
Source Author(s)/Editor(s): Mehdi Khosrow-Pour, D.B.A. (Information Resources Management Association, USA)
DOI: 10.4018/978-1-59140-553-5.ch043


View Bayesian Machine Learning on the publisher's website for pricing and purchasing information.


Bayesian methods provide a probabilistic approach to machine learning. The Bayesian framework allows us to make inferences from data using probability models for values we observe and about which we want to draw some hypotheses. Bayes theorem provides the means of calculating the probability of a hypothesis (posterior probability) based on its prior probability, the probability of the observations and the likelihood that the observational data fit the hypothesis.

Related Content

Adeyinka Tella, Oluwakemi Titilola Olaniyi, Aderinola Ololade Dunmade. © 2021. 24 pages.
Md. Maidul Islam. © 2021. 17 pages.
Peterson Dewah. © 2021. 23 pages.
Lungile Precious Luthuli, Thobekile K. Buthelezi. © 2021. 14 pages.
Delight Promise Udochukwu, Chidimma Oraekwe. © 2021. 13 pages.
Julie Moloi. © 2021. 18 pages.
Mandisa Msomi, Lungile Preciouse Luthuli, Trywell Kalusopa. © 2021. 17 pages.
Body Bottom