IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Automatic Classification of Impact-Echo Spectra II

Automatic Classification of Impact-Echo Spectra II
View Sample PDF
Author(s): Addisson Salazar (iTEAM, Polytechnic University of Valencia, Spain)and Arturo Serrano (iTEAM, Polytechnic University of Valencia, Spain)
Copyright: 2009
Pages: 7
Source title: Encyclopedia of Artificial Intelligence
Source Author(s)/Editor(s): Juan Ramón Rabuñal Dopico (University of A Coruña, Spain), Julian Dorado (University of A Coruña, Spain)and Alejandro Pazos (University of A Coruña, Spain)
DOI: 10.4018/978-1-59904-849-9.ch031

Purchase

View Automatic Classification of Impact-Echo Spectra II on the publisher's website for pricing and purchasing information.

Abstract

We study the application of artificial neural networks (ANNs) to the classification of spectra from impact-echo signals. In this paper we focus on analyses from experiments. Simulation results are covered in paper I. Impact-echo is a procedure from Non-Destructive Evaluation where a material is excited by a hammer impact which produces a response from the material microstructure. This response is sensed by a set of transducers located on material surface. Measured signals contain backscattering from grain microstructure and information of flaws in the material inspected (Sansalone & Street, 1997). The physical phenomenon of impact-echo corresponds to wave propagation in solids. When a disturbance (stress or displacement) is applied suddenly at a point on the surface of a solid, such as by impact, the disturbance propagates through the solid as three different types of stress waves: a P-wave, an S-wave, and an R-wave. The P-wave is associated with the propagation of normal stress and the S-wave is associated with shear stress, both of them propagate into the solid along spherical wave fronts. In addition, a surface wave, or Rayleigh wave (R-wave) travels throughout a circular wave front along the material surface (Carino, 2001). After a transient period where the first waves arrive, wave propagation becomes stationary in resonant modes of the material that vary depending on the defects inside the material. In defective materials propagated waves have to surround the defects and their energy decreases, and multiple reflections and diffraction with the defect borders become reflected waves (Sansalone, Carino, & Hsu, 1998). Depending on the observation time and the sampling frequency used in the experiments we may be interested in analyzing the transient or the stationary stage of the wave propagation in impact- echo tests. Usually with high resolution in time, analyzes of wave propagation velocity can give useful information, for instance, to build a tomography of a material inspected from different locations. Considering the sampling frequency that we used in the experiments (100 kHz), a feature extracted from the signal as the wave propagation velocity is not accurate enough to discern between homogeneous and different kind of defective materials. The data set for this research consists of sonic and ultrasonic impact-echo signal (1-27 kHz) spectra obtained from 84 parallelepiped-shape (7x5x22cm. width, height and length) lab specimens of aluminium alloy series 2000. These spectra, along with a categorization of the quality of materials among homogeneous, one-defect and multiple-defect classes were used to develop supervised neural network classifiers. We show that neural networks yield good classifications (

Related Content

Kamel Mouloudj, Vu Lan Oanh LE, Achouak Bouarar, Ahmed Chemseddine Bouarar, Dachel Martínez Asanza, Mayuri Srivastava. © 2024. 20 pages.
José Eduardo Aleixo, José Luís Reis, Sandrina Francisca Teixeira, Ana Pinto de Lima. © 2024. 52 pages.
Jorge Figueiredo, Isabel Oliveira, Sérgio Silva, Margarida Pocinho, António Cardoso, Manuel Pereira. © 2024. 24 pages.
Fatih Pinarbasi. © 2024. 20 pages.
Stavros Kaperonis. © 2024. 25 pages.
Thomas Rui Mendes, Ana Cristina Antunes. © 2024. 24 pages.
Nuno Geada. © 2024. 12 pages.
Body Bottom