IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Ant Colony Optimization Applied to the Training of a High Order Neural Network with Adaptable Exponential Weights

Ant Colony Optimization Applied to the Training of a High Order Neural Network with Adaptable Exponential Weights
View Sample PDF
Author(s): Ashraf M. Abdelbar (Brandon University, Canada), Islam Elnabarawy (Missouri University of Science and Technology, USA), Donald C. Wunsch II (Missouri University of Science and Technology, USA)and Khalid M. Salama (University of Kent, UK)
Copyright: 2020
Pages: 14
Source title: Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-0414-7.ch006

Purchase


Abstract

High order neural networks (HONN) are neural networks which employ neurons that combine their inputs non-linearly. The HONEST (High Order Network with Exponential SynapTic links) network is a HONN that uses neurons with product units and adaptable exponents. The output of a trained HONEST network can be expressed in terms of the network inputs by a polynomial-like equation. This makes the structure of the network more transparent and easier to interpret. This study adapts ACOℝ, an Ant Colony Optimization algorithm, to the training of an HONEST network. Using a collection of 10 widely-used benchmark datasets, we compare ACOℝ to the well-known gradient-based Resilient Propagation (R-Prop) algorithm, in the training of HONEST networks. We find that our adaptation of ACOℝ has better test set generalization than R-Prop, though not to a statistically significant extent.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom