The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Analysis of Precipitation Variability using Memory Based Artificial Neural Networks
Abstract
This article analyzes the variability in precipitation of the Barak river basin using memory-based ANN models called Gamma Memory Neural Network(GMNN) and genetically optimized GMNN called GMNN-GA for precipitation downscaling precipitation. GMNN having adaptive memory depth is capable techniques in modeling time varying inputs with unknown input characteristics, while an integration of the model with GA can further improve its performances. NCEP reanalysis and HadCM3A2 (a) scenario data are used for downscaling and forecasting precipitation series for Barak river basin. Model performances are analyzed by using statistical criteria, RMSE and mean error and are compared with the standard SDSM model. Results obtained by using 24 years of daily data sets show that GMNN-GA is efficient in downscaling daily precipitation series with maximum daily annual mean error of 6.78%. The outcomes of the study demonstrate that execution of the GMNN-GA model is superior to the GMNN and similar with that of the standard SDSM.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|