The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
An Optimized Semi-Supervised Learning Approach for High Dimensional Datasets
|
Author(s): Nesma Settouti (Tlemcen University, Algeria), Mostafa El Habib Daho (Tlemcen University, Algeria), Mohammed El Amine Bechar (Tlemcen University, Algeria)and Mohammed Amine Chikh (Tlemcen University, Algeria)
Copyright: 2018
Pages: 28
Source title:
Applying Big Data Analytics in Bioinformatics and Medicine
Source Author(s)/Editor(s): Miltiadis D. Lytras (Deree - The American College of Greece, Greece)and Paraskevi Papadopoulou (Deree - The American College of Greece, Greece)
DOI: 10.4018/978-1-5225-2607-0.ch012
Purchase
|
Abstract
The semi-supervised learning is one of the most interesting fields for research developments in the machine learning domain beyond the scope of supervised learning from data. Medical diagnostic process works mostly in supervised mode, but in reality, we are in the presence of a large amount of unlabeled samples and a small set of labeled examples characterized by thousands of features. This problem is known under the term “the curse of dimensionality”. In this study, we propose, as solution, a new approach in semi-supervised learning that we would call Optim Co-forest. The Optim Co-forest algorithm combines the re-sampling data approach (Bagging Breiman, 1996) with two selection strategies. The first one involves selecting random subset of parameters to construct the ensemble of classifiers following the principle of Co-forest (Li & Zhou, 2007). The second strategy is an extension of the importance measure of Random Forest (RF; Breiman, 2001). Experiments on high dimensional datasets confirm the power of the adopted selection strategies in the scalability of our method.
Related Content
Alessandra Lima da Silva, Diego Mariano, Mariana Parise, Angie L. A. Puelles, Tatiane Senna Bialves, Luana Luiza Bastos, Lucas Santos, Rafael Pereira Lemos.
© 2025.
22 pages.
|
Seyyed Mohammad Amin Mousavi Sagharchi, Mohsen Sheykhhasan, Atousa Ghorbani, Elina Afrazeh, Naresh Poondla, Naser Kalhor, Hamid Tanzadehpanah, Hanie Mahaki, Hamed Manoochehri.
© 2025.
46 pages.
|
Eduarda Guimarães Sousa, Lucas Gabriel Rodrigues Gomes, Fernanda Diniz Prates, Talita Pereira Gomes, Gabriel Camargos Gomes, Janaíne Aparecida de Paula, Ana Lua de Oliveira Vinhal, Bernardo Buhr Alves Mendonça, Mariana Letícia Costa Pedrosa, Luiza Pereira Reis, Aline Ferreira Maciel de Oliveira, Marcus Vinicius Canário Viana, Arun Kumar Jaiswal, Siomar de Castro Soares, Vasco Ariston de Carvalho Azevedo.
© 2025.
38 pages.
|
Diego Mariano, Lucas Moraes dos Santos, Raquel Cardoso de Melo-Minardi.
© 2025.
30 pages.
|
Alessandra G. Cioletti, Frederico C. Carvalho, Lucas M. Dos Santos, Raquel C. M. Minardi.
© 2025.
32 pages.
|
Leandro Morais de Oliveira, Luana Luiza Bastos, Vivian Morais Paixão, Leticia Aparecida Gontijo, Tatiane Senna Bialves, Diego Mariano, Raquel Cardoso de Melo Minardi.
© 2025.
40 pages.
|
Angie Atoche Puelles, Luana Luiza Bastos, Vivian Morais Paixão, Sheila Cruz Araujo, Raquel Cardoso de Melo Minardi.
© 2025.
28 pages.
|
|
|