IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

An improved Dynamic Search Fireworks Algorithm Optimizes Extreme Learning Machine to Predict Virtual Machine Fault

An improved Dynamic Search Fireworks Algorithm Optimizes Extreme Learning Machine to Predict Virtual Machine Fault
View Sample PDF
Author(s): Shoufei Han (Nanjing University of Aeronautics and Astronautics, China) and Kun Zhu (Nanjing University of Aeronautics and Astronautics, China)
Copyright: 2020
Pages: 18
Source title: Handbook of Research on Fireworks Algorithms and Swarm Intelligence
Source Author(s)/Editor(s): Ying Tan (Peking University, China)
DOI: 10.4018/978-1-7998-1659-1.ch006

Purchase


Abstract

The Dynamic Search Fireworks Algorithm (dynFWA) is an effective algorithm for solving optimization problems. However, dynFWA is easy to fall into local optimal solutions prematurely and it also provides a slow convergence rate. To address these problems, an improved dynFWA (IdynFWA) is proposed in this chapter. In IdynFWA, the population is first initialized based on opposition-based learning. The adaptive mutation is proposed for the core firework (CF) which chooses whether to use Gaussian mutation or Levy mutation for the CF according to the mutation probability. A new selection strategy, namely disruptive selection, is proposed to maintain the diversity of the algorithm. The results show that the proposed algorithm achieves better overall performance on the standard test functions. Meanwhile, IdynFWA is used to optimize the Extreme Learning Machine (ELM), and a virtual machine fault warning model is proposed based on ELM optimized by IdynFWA. The results show that this model can achieve higher accuracy and better stability to some extent.

Related Content

Ying Tan. © 2020. 41 pages.
JunQi Zhang, JianQing Chen, WeiZhi Li. © 2020. 13 pages.
Jun Yu, Hideyuki Takagi. © 2020. 15 pages.
Daniel C. Lee, Katherine Manson. © 2020. 37 pages.
Sreeja N. K.. © 2020. 21 pages.
Shoufei Han, Kun Zhu. © 2020. 18 pages.
Yu Xue. © 2020. 28 pages.
Body Bottom