The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Adaptive Hybrid Higher Order Neural Networks for Prediction of Stock Market Behavior
Abstract
This chapter presents two higher order neural networks (HONN) for efficient prediction of stock market behavior. The models include Pi-Sigma, and Sigma-Pi higher order neural network models. Along with the traditional gradient descent learning, how the evolutionary computation technique such as genetic algorithm (GA) can be used effectively for the learning process is also discussed here. The learning process is made adaptive to handle the noise and uncertainties associated with stock market data. Further, different prediction approaches are discussed here and application of HONN for time series forecasting is illustrated with real life data taken from a number of stock markets across the globe.
Related Content
S. Karthigai Selvi, Sharmistha Dey, Siva Shankar Ramasamy, Krishan Veer Singh.
© 2025.
16 pages.
|
S. Sheeba Rani, M. Mohammed Yassen, Srivignesh Sadhasivam, Sharath Kumar Jaganathan.
© 2025.
22 pages.
|
U. Vignesh, K. Gokul Ram, Abdulkareem Sh. Mahdi Al-Obaidi.
© 2025.
22 pages.
|
Monica Bhutani, Monica Gupta, Ayushi Jain, Nishant Rajoriya, Gitika Singh.
© 2025.
24 pages.
|
U. Vignesh, Arpan Singh Parihar.
© 2025.
34 pages.
|
Sharmistha Dey, Krishan Veer Singh.
© 2025.
20 pages.
|
Kalpana Devi.
© 2025.
26 pages.
|
|
|