IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Similarity-Based Object Classification Using Deep Neural Networks

A Similarity-Based Object Classification Using Deep Neural Networks
View Sample PDF
Author(s): Parvathi R. (VIT University Chennai, India)and Pattabiraman V. (VIT University Chennai, India)
Copyright: 2019
Pages: 23
Source title: Handbook of Research on Deep Learning Innovations and Trends
Source Author(s)/Editor(s): Aboul Ella Hassanien (Cairo University, Egypt), Ashraf Darwish (Helwan University, Egypt)and Chiranji Lal Chowdhary (VIT University, India)
DOI: 10.4018/978-1-5225-7862-8.ch012

Purchase

View A Similarity-Based Object Classification Using Deep Neural Networks on the publisher's website for pricing and purchasing information.

Abstract

This chapter proposes a hybrid method for classification of the objects based on deep neural network and a similarity-based search algorithm. The objects are pre-processed with external conditions. After pre-processing and training different deep learning networks with the object dataset, the authors compare the results to find the best model to improve the accuracy of the results based on the features of object images extracted from the feature vector layer of a neural network. RPFOREST (random projection forest) model is used to predict the approximate nearest images. ResNet50, InceptionV3, InceptionV4, and DenseNet169 models are trained with this dataset. A proposal for adaptive finetuning of the deep learning models by determining the number of layers required for finetuning with the help of the RPForest model is given, and this experiment is conducted using the Xception model.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom