IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Parallel Levenberg-Marquardt Algorithm for Recursive Neural Network in a Robot Control System

A Parallel Levenberg-Marquardt Algorithm for Recursive Neural Network in a Robot Control System
View Sample PDF
Author(s): Wei Wang (Jimei University, China), Yunming Pu (Jimei University, China)and Wang Li (Jimei University, China)
Copyright: 2020
Pages: 16
Source title: Robotic Systems: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-1754-3.ch038

Purchase

View A Parallel Levenberg-Marquardt Algorithm for Recursive Neural Network in a Robot Control System on the publisher's website for pricing and purchasing information.

Abstract

This article has the purpose of overcoming the shortcomings of the recursive neural network learning algorithm and the inherent delay problem on the manipulator master control system. This is by analyzing the shortcomings of LM learning algorithms based on DRNN network, an improved parallel LM algorithm is proposed. The parallel search of the damping coefficient β is found in order to reduce the number of iterations of the loop, and the algorithm is used to decompose the parameter operation and the matrix operation into the processor (core), thereby improve the learning convergence speed, and control the scale of the delay. The simulation results show that the pro-posed algorithm is feasible.

Related Content

Brij B. Gupta, Akshat Gaurav, Francesco Colace. © 2025. 16 pages.
Akshat Gaurav, Varsha Arya. © 2025. 16 pages.
Brij B. Gupta, Jinsong Wu. © 2025. 22 pages.
Purwadi Agus Darwinto, Agung Mulyo Widodo, Nilla Perdana Agustina, Kadek Dwi Wahyuadnyana, Mosiur Rahaman. © 2025. 30 pages.
Mosiur Rahaman, Karisma Trinda Putra, Bambang Irawan, Totok Ruki Biyanto. © 2025. 30 pages.
Shaurya Katna, Sunil K. Singh, Sudhakar Kumar, Divyansh Manro, Amit Chhabra, Sunil Kumar Sharma. © 2025. 22 pages.
Kwok Tai Chui, Varsha Arya, Akshat Gaurav, Shavi Bansal, Ritika Bansal. © 2025. 22 pages.
Body Bottom