IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Knowledge-Based Approach for Microwire Casting Plant Control

A Knowledge-Based Approach for Microwire Casting Plant Control
View Sample PDF
Author(s): S. Zaporojan (Technical University of Moldova, Republic of Moldova), C. Plotnic (Technical University of Moldova, Republic of Moldova), I. Calmicov (Technical University of Moldova, Republic of Moldova)and V. Larin (Microfir Tehnologii Industriale Ltd, Republic of Moldova)
Copyright: 2014
Pages: 19
Source title: Nanotechnology: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-4666-5125-8.ch069

Purchase

View A Knowledge-Based Approach for Microwire Casting Plant Control on the publisher's website for pricing and purchasing information.

Abstract

This chapter presents the main ideas and preliminary results of an applied research project concerning the development of an intelligent plant for microwire casting. The properties of glass-coated microwires are useful for a variety of sensor applications. On the other hand, the process of casting can be one of the methods of nanotechnology and advanced materials. In microwire continuous casting, the main control problem is to maintain the optimum thermal and flow conditions of the process, in order to fabricate the microwire of a given stable diameter. Unlike a conventional casting plant, we propose to use a video camera to take the picture of the molten drop and to control the casting process by means of a knowledge based system. For this reason, a model, that is capable of taking into account the current features of the process and of describing the shape of the drop at each time, is developed. The model presented here should allow us to estimate the geometry of the metal-filled capillary and predict the diameter of microwire at each time during the casting process.

Related Content

Wassim Jaber. © 2024. 24 pages.
Hussein A.H. Jaber, Zahraa Saleh, Wassim Jaber, Adnan Badran, Hatem Nasser. © 2024. 17 pages.
Sakshi Garg, Kunal Arora, Sumita Singh, K. Nagarajan. © 2024. 20 pages.
Wassim Jaber. © 2024. 14 pages.
Ray Gutierrez Jr.. © 2024. 22 pages.
Wassim Jaber, Hussein A.H. Jaber, Ramzi Jaber, Zahraa Saleh. © 2024. 16 pages.
Zahraa Saleh, Wassim Jaber, Ali Jaber, Edmond Cheble, Mikhael Bechelany, Akram Hijazi, David Cornu, Ghassan Mahmoud Ibrahim. © 2024. 22 pages.
Body Bottom