IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Hybrid Approach to Detect the Malicious Applications in Android-Based Smartphones Using Deep Learning

A Hybrid Approach to Detect the Malicious Applications in Android-Based Smartphones Using Deep Learning
View Sample PDF
Author(s): Manokaran Newlin Rajkumar (Anna University Coimbatore, India), Varadhan Venkatesa Kumar (Anna University Coimbatore, India) and Ramachandhiran Vijayabhasker (Anna University Coimbatore, India)
Copyright: 2020
Pages: 19
Source title: Handbook of Research on Machine and Deep Learning Applications for Cyber Security
Source Author(s)/Editor(s): Padmavathi Ganapathi (Avinashilingam Institute for Home Science and Higher Education for Women, India) and D. Shanmugapriya (Avinashilingam Institute for Home Science and Higher Education for Women, India)
DOI: 10.4018/978-1-5225-9611-0.ch009

Purchase

View A Hybrid Approach to Detect the Malicious Applications in Android-Based Smartphones Using Deep Learning on the publisher's website for pricing and purchasing information.

Abstract

This modern era of technological advancements facilitates the people to possess high-end smart phones with incredible features. With the increase in the number of mobile applications, we are witnessing the humongous increase in the malicious applications. Since most of the Android applications are available open source and used frequently in the smart phones, they are more vulnerable. Statistical and dynamical-based malware detection approaches are available to verify whether the mobile application is a genuine one, but only to a certain extent, as the level of mobile application scanning done by the said approaches are in general routine or a common, pre-specified pattern using the structure of control flow, information flow, API call, etc. A hybrid method based on deep learning methodology is proposed to identify the malicious applications in Android-based smart phones in this chapter, which embeds the possible merits of both the statistical-based malware detection approaches and dynamical-based malware detection approaches and minimizes the demerits of them.

Related Content

Renu Sharma, Mamta Mohan. © 2022. 25 pages.
Kirandeep Bedi, Monica Bedi, Ramanjeet Singh. © 2022. 14 pages.
Darshana Desai. © 2022. 14 pages.
Abhinav Chaturvedi, Mukesh Chaturvedi. © 2022. 16 pages.
Nidhi Shridhar Natrajan, Sanjeev Kumar Singh, Rinku Sanjeev. © 2022. 22 pages.
Shailja Dixit. © 2022. 23 pages.
Surabhi Singh, José Duarte Santos. © 2022. 12 pages.
Body Bottom