IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

A Framework for an Artificial-Neural-Network-Based Electronic Nose

A Framework for an Artificial-Neural-Network-Based Electronic Nose
View Sample PDF
Author(s): Mudassir Ismail (University of Bahrain, Bahrain), Ahmed Abdul Majeed (University of Bahrain, Bahrain)and Yousif Abdullatif Albastaki (Ahlia University, Bahrain)
Copyright: 2022
Pages: 25
Source title: Research Anthology on Artificial Neural Network Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-6684-2408-7.ch017

Purchase

View A Framework for an Artificial-Neural-Network-Based Electronic Nose on the publisher's website for pricing and purchasing information.

Abstract

Machine odor detection has developed into an important aspect of our lives with various applications of it. From detecting food spoilage to diagnosis of diseases, it has been developed and tested in various fields and industries for specific purposes. This project, artificial-neural-network-based electronic nose (ANNeNose), is a machine-learning-based e-nose system that has been developed for detection of various types of odors for a general purpose. The system can be trained on any odor using various e-nose sensor types. It uses artificial neural network as its machine learning algorithm along with an OMX-GR semiconductor gas sensor for collecting odor data. The system was trained and tested with five different types of odors collected through a standard data collection method and then purified, which in turn had a result varying from 93% to 100% accuracy.

Related Content

Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu. © 2025. 32 pages.
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote. © 2025. 18 pages.
Kok Yeow You, Man Seng Sim. © 2025. 96 pages.
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid. © 2025. 38 pages.
Mandeep Kaur. © 2025. 24 pages.
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta. © 2025. 22 pages.
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta. © 2025. 14 pages.
Body Bottom