The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
A Deep Learning Solution for Multimedia Conference System Assisted by Cloud Computing
|
Author(s): Wei Zhang (Shandong University of Science and Technology, China & Shandong Computer Science Center (National Supercomputer Center in Jinan), China), Huiling Shi (Shandong Computer Science Center (National Supercomputer Center in Jinan), China), Xinming Lu (Shandong University of Science and Technology, China)and Longquan Zhou (Shandong University of Science and Technology, China)
Copyright: 2020
Pages: 14
Source title:
Deep Learning and Neural Networks: Concepts, Methodologies, Tools, and Applications
Source Author(s)/Editor(s): Information Resources Management Association (USA)
DOI: 10.4018/978-1-7998-0414-7.ch022
Purchase
|
Abstract
With the development of information technology, more and more people use multimedia conference system to communicate or work across regions. In this article, an ultra-reliable and low-latency solution based on Deep Learning and assisted by Cloud Computing for multimedia conference system, called UCCMCS, is designed and implemented. In UCCMCS, there are two-tiers in its data distribution structure which combines the advantages of cloud computing. And according to the requirements of ultra-reliability and low-latency, a bandwidth optimization model is proposed to improve the transmission efficiency of multimedia data so as to reduce the delay of the system. In order to improve the reliability of data distribution, the help of cloud computing node is used to carry out the retransmission of lost data. the experimental results show UCCMCS could improve the reliability and reduce the latency of the multimedia data distribution in multimedia conference system.
Related Content
Dankan Gowda V., Anjali Sandeep Gaikwad, Pilli Lalitha Kumari, Erdal Buyukbicakci, Sengul Ibrahimoglu.
© 2025.
32 pages.
|
Debasish Banerjee, Ranjit Barua, Sudipto Datta, Dileep Pathote.
© 2025.
18 pages.
|
Kok Yeow You, Man Seng Sim.
© 2025.
96 pages.
|
Man Seng Sim, Kok Yeow You, Fahmiruddin Esa, Raimi Dewan, DiviyaDevi Paramasivam, Rozeha A. Rashid.
© 2025.
38 pages.
|
Mandeep Kaur.
© 2025.
24 pages.
|
Ganesh Khekare, Priya Dasarwar, Ajay Kumar Phulre, Urvashi Khekare, Gaurav Kumar Ameta, Shashi Kant Gupta.
© 2025.
22 pages.
|
Manoj Kumar Elipey, P. S. Kishore, Ratna Sunil Buradagunta.
© 2025.
14 pages.
|
|
|