IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Wear of Dry Sliding Al 6061-T6 Alloy Under Different Loading Conditions

Wear of Dry Sliding Al 6061-T6 Alloy Under Different Loading Conditions
View Sample PDF
Author(s): Srinivasula Reddy I. (National Institute of Technology, Karnataka, India)and Vadivuchezhian Kaliveeran (National Institute of Technology, Karnataka, India)
Copyright: 2022
Volume: 10
Issue: 1
Pages: 12
Source title: International Journal of Surface Engineering and Interdisciplinary Materials Science (IJSEIMS)
Editor(s)-in-Chief: J. Paulo Davim (University of Aveiro, Portugal)
DOI: 10.4018/IJSEIMS.2022010106

Purchase

View Wear of Dry Sliding Al 6061-T6 Alloy Under Different Loading Conditions on the publisher's website for pricing and purchasing information.

Abstract

In the present work, wear of Al 6061-T6 alloy under different normal loads, sliding speeds and temperatures was investigated. Pin on disk type tribometer was used to conduct dry sliding experiments. Different load combinations comprising of normal loads (1 kg, 1.5 kg and 2 kg), sliding speeds (1.25 m/s, 2 m/s and 3 m/s) and temperatures (room temperature (31 ± 1 °C), 60 °C, 100 °C and 150 °C) were applied during dry sliding experiments. Adhesive and abrasive wear mechanisms were observed in dry sliding of Al 6061-T6 alloy contacts from the microscopic analysis of worn contact surfaces. The wear rate was more influenced by increase in normal load than increase in sliding speed and temperature. Under normal loads of 1 kg and 1.5 kg, Al 6061-T6 alloy showed better wear resistance at higher temperatures when compared to that at room temperature.

Related Content

Meng-Ting Chiang, Pei-Ing Lee, Ang-Ying Lin, Tung-Han Chuang. © 2024. 11 pages.
Jean Claude Mallia, Anthea Agius Anastasi, Sophie Marie Briffa. © 2023. 20 pages.
Manik Barman, Tapan Kumar Barman, Prasanta Sahoo. © 2022. 26 pages.
Vinod Kumar V. Meti, G. U. Raju, I. G. Siddhalingeshwar, Vinayak Neelakanth Gaitonde. © 2022. 13 pages.
Sandeep Kumar Khatkar, Rajeev Verma, Suman Kant, Narendra Mohan Suri. © 2022. 19 pages.
Jason van Dyke, Michel Nganbe. © 2022. 19 pages.
Basant Lal, Abhijit Dey, Mohamamd Farooq Wani. © 2022. 12 pages.
Body Bottom