IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Multi-Agent Actor Critic for Channel Allocation in Heterogeneous Networks

Multi-Agent Actor Critic for Channel Allocation in Heterogeneous Networks
View Sample PDF
Author(s): Nan Zhao (Hubei University of Technology, China), Zehua Liu (Hubei University of Technology, China), Yiqiang Cheng (Hubei University of Technology, China)and Chao Tian (Hubei University of Technology, China)
Copyright: 2020
Volume: 11
Issue: 1
Pages: 19
Source title: International Journal of Mobile Computing and Multimedia Communications (IJMCMC)
Editor(s)-in-Chief: Agustinus Waluyo (Monash University, Australia)
DOI: 10.4018/IJMCMC.2020010102

Purchase

View Multi-Agent Actor Critic for Channel Allocation in Heterogeneous Networks on the publisher's website for pricing and purchasing information.

Abstract

Heterogeneous networks (HetNets) can equalize traffic loads and cut down the cost of deploying cells. Thus, it is regarded to be the significant technique of the next-generation communication networks. Due to the non-convexity nature of the channel allocation problem in HetNets, it is difficult to design an optimal approach for allocating channels. To ensure the user quality of service as well as the long-term total network utility, this article proposes a new method through utilizing multi-agent reinforcement learning. Moreover, for the purpose of solving computational complexity problem caused by the large action space, deep reinforcement learning is put forward to learn optimal policy. A nearly-optimal solution with high efficiency and rapid convergence speed could be obtained by this learning method. Simulation results reveal that this new method has the best performance than other methods.

Related Content

Wanqiao Wang, Jian Su, Hui Zhang, Luyao Guan, Qingrong Zheng, Zhuofan Tang, Huixia Ding. © 2024. 16 pages.
. © 2024.
Xinhong You, Pengping Zhang, Minglin Liu, Lingqi Lin, Shuai Li. © 2023. 18 pages.
Nan Zhao, Jiaye Wang, Bo Jin, Ru Wang, Minghu Wu, Yu Liu, Lufeng Zheng. © 2023. 17 pages.
Tongyao Nie, Xinguang Lv. © 2023. 14 pages.
Ali Bonyadi Naeini, Ali Golbazi Mahdipour, Rasam Dorri. © 2023. 24 pages.
Agnitè Maxim Wilfrid Straiker Edoh, Tahirou Djara, Abdou-Aziz Sobabe Ali Tahirou, Antoine Vianou. © 2023. 16 pages.
Body Bottom