The IRMA Community
Newsletters
Research IRM
Click a keyword to search titles using our InfoSci-OnDemand powered search:
|
Estimation of Friction for a Hydrodynamic Sliding Bearing for the Turbulent Regime From Single-Phase and Two-Phase Fluid Flow Behaviour
|
Author(s): Bouchelaghem Imene (Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Algeria), Bendaoud Nadia (Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Algeria), Mehala Kadda (Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Algeria), Khoussa Hadja (Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Algeria), Khelif Fatima Zohra (Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Algeria), Foullani Abdelhalim (Faculté de Génie Mécanique, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Algeria)and Bendaoud Mohammed Habib (Faculté de Physique, Université des Sciences et de la Technologie d'Oran Mohamed Boudiaf, Algeria)
Copyright: 2024
Volume: 12
Issue: 1
Pages: 26
Source title:
International Journal of Surface Engineering and Interdisciplinary Materials Science (IJSEIMS)
Editor(s)-in-Chief: J. Paulo Davim (University of Aveiro, Portugal)
DOI: 10.4018/IJSEIMS.351249
Purchase
|
Abstract
The hydrodynamic plain bearing relies on the generation of a lubricant film through the rotational movement of the journal. As the journal rotates, it creates a layer of lubricant between the bearing and journal surfaces. This lubricant film separates the two surfaces, preventing direct contact and minimizing friction and wear. The high speeds can lead to severe conditions such as cavitation due to rapid oil evaporation, which introduces a new phase into the flow. In this study, it is anticipated that a two-phase flow will occur through the shaft-bushing conjunction because of the rupture of the lubricating film near the contact outlet. Pressure disturbances above these rupture zones may induce vapor-cavity formation at a small scale. A numerical analysis was conducted by solving Navier–Stokes continuity equations and vapor-transport equations. The k-epsilon model was used to analyze friction at the fluid-bearing interface for the turbulent regime. The results indicate that higher flow velocity values and pressure were observed in the case of two-phase flow compared to one-phase flow.
Related Content
Tabti Ikram, Mehala Kadda, Hennane Sarra, Bendaoud Mohammed Habib, Bendaoud Nadia, Khelif Fatima Zohra, Guemir Abdelkader.
© 2025.
31 pages.
|
Bouchelaghem Imene, Bendaoud Nadia, Mehala Kadda, Khoussa Hadja, Khelif Fatima Zohra, Foullani Abdelhalim, Bendaoud Mohammed Habib.
© 2024.
26 pages.
|
Jean Claude Mallia, Anthea Agius Anastasi, Sophie Marie Briffa.
© 2023.
20 pages.
|
Basant Lal, Abhijit Dey, Mohamamd Farooq Wani.
© 2022.
12 pages.
|
Manik Barman, Tapan Kumar Barman, Prasanta Sahoo.
© 2022.
26 pages.
|
Tamonash Jana, Anirban Mitra, Prasanta Sahoo.
© 2022.
18 pages.
|
Vinod Kumar V. Meti, G. U. Raju, I. G. Siddhalingeshwar, Vinayak Neelakanth Gaitonde.
© 2022.
13 pages.
|
|
|