IRMA-International.org: Creator of Knowledge
Information Resources Management Association
Advancing the Concepts & Practices of Information Resources Management in Modern Organizations

Deep Reinforcement Learning and In-Network Caching-Based Martial Arts Physical Training

Deep Reinforcement Learning and In-Network Caching-Based Martial Arts Physical Training
View Sample PDF
Author(s): Qi Zhang (Jilin Sport University, China)
Copyright: 2022
Volume: 13
Issue: 2
Pages: 8
Source title: International Journal of Distributed Systems and Technologies (IJDST)
Editor(s)-in-Chief: Nik Bessis (Edge Hill University, UK)
DOI: 10.4018/IJDST.291079

Purchase

View Deep Reinforcement Learning and In-Network Caching-Based Martial Arts Physical Training on the publisher's website for pricing and purchasing information.

Abstract

The martial arts have been regarded as the athletics project at the international competitions, and the corresponding physical training has also brought about widespread attention. However, the traditional physical training evaluation methods are usually performed in the offline way and they are very difficult to achieve the large-scale data evaluation with the high evaluation efficiency. Therefore, this paper leverages Deep Reinforcement Learning (DRL) and in-network caching to realize the high-precision and high-efficiency data evaluation under the large-scale martial arts physical training environment while guarantees the online performance evaluation. Meanwhile, Q-learning based DRL is used to make the large-scale data evaluation. In addition, a communication protocol based on in-network caching is proposed to support the online function. The comparison experiments demonstrate that the proposed conduction method for the martial arts physical training is more efficient than the benchmark.

Related Content

. © 2022.
Liguo Wang, Haibin Yang. © 2022. 14 pages.
Qi Zhang. © 2022. 8 pages.
Chenchen Yao, Chuangang Zhao. © 2022. 11 pages.
Jianxin Wang, Geng Li. © 2022. 10 pages.
Jing Fu, Zipeng Han. © 2022. 10 pages.
Victor Chang, Keerthi Kandadai, Qianwen Ariel Xu, Steven Guan. © 2022. 22 pages.
Body Bottom