Biodiversity and Habitat Changes Modelling Experiences in Ukraine and Eastern Europe Countries

Vasyl Prydatko, BioticGIS Modelling Group, International Association Ukrainian Land and Resources Management Center, Kyiv, Ukraine

Grygoriy Kolomytsev, I.I. Schmalhausen Institute of Zoology of National Academy of Sciences of Ukraine, Kyiv, Ukraine

ABSTRACT

This is updated study on biodiversity and its conditions in Ukraine and seven surrounding countries. It includes four different methods: the indicative-index approach, the Mean Species Abundance (MSA) and two species based approaches, one using habitat changes as driving factor (EEBIO) and the other includes climate change (SDM_GL, BIOCLIM). The indicative-index methodology ‘BINU’ dealt with 128 species and 98 agrobiodiversity indicators-indices, and demonstrated low impact of climate change from 1950-2002. The EEBIO approach links species distribution maps, compiled from different sources to habitat change maps, resulting in a series of 900 GIS maps. The MSA-approach gives a general view and shows a low impact of climate change by 2002, and a high impact due to habitat loss. The GLM-approach provided detailed species-based maps of the expected changes in habitats condition caused by land use change and climate change, contrary to BIOCLIM. Finally, the selected 55 indicator species (vascular plants, insects, amphibians, birds and mammals) demonstrated a surprising diversity of GLM-trends by 2030-2050. It proved that expected climate change, together with land-use change would provoke numerous expected and unexpected species-habitat alterations. GLM- and BIOCLIM-based scenarios can not be the same. If the final GLM-scenarios are correct, then in the near future in Ukraine in particular, scientists and decision makers will by 2050 find about 4% of new species or will lose up to 13% of existing species.

Keywords: Biodiversity, Birds, DIVA, Eastern Europe, GLOBIO, Generalized Linear Model (GLM), Insects, Mammals, Modelling, Plants, Mean Species Abundance (MSA), Ukraine

1. INTRODUCTION

In the GLOBIO Ukraine Region (i.e. Ukraine, Moldova, Belarus) until 2003, climate change, land use change and biodiversity were mainly discussed as philosophical issues and in scientific publications no attention was given to the evidence based biodiversity-changes resulting from pressures like climate change. In 2003-2005, the UNEP-GEF funded Biodiversity Indicators for National Use (BINU) project proposed the indicative-index approach
and demonstrated possible impact of land use change (LUC) and climate change (CC) on agrobiodiversity of Ukraine (Sozinov et al., 2005a, 2005b). In 2007 the internationally oriented Ukrainian Land and Resources Management Centre (ULRMC, Kyiv) jointly with the Netherlands Environmental Assessment Agency (PBL) carried out an application of a pressure based biodiversity model at national and regional level. Based on that study a book on ‘Landscape Ecology’ was published for educational purposes (Prydatko et al., 2008a, 2008b). In June 2008, the partners completed the second project on biodiversity modelling, i.e. the ‘Projection of Species- and Species-Climate Based Models and Scenario Development’ using the GLOBIO approach for region, which was mainly focused on Ukraine and neighboring countries (Belarus and Moldova). At the same time, the methodology used required a much larger geographical space for a better simulation. It also required a broader set of species including rare and ‘red-data-book’ species as well as alien species. In 2008-2009, the geographical space for the species-based-models was extended to other Eastern European countries (Armenia, Azerbaijan, Belarus, Georgia, Kazakhstan and Russia), which we called the EEBIO region. The final modelling has been applied for projections from 2000 towards 2030 and 2050. This paper summarizes and compares several different modelling approaches (indicative-index, MSA, EEBIO-based, SDM_GLM and BIOCLIM) and discuss them at the conceptual level and in their possible applicability for the GLOBIO Ukraine region and surrounding countries.

2. REGIONAL BIODIVERSITY MODELLING HISTORY

The regional history of biodiversity modelling only started in 2005 with a serious attempt of digitizing biodiversity distribution maps. Unlike other European countries, Ukraine has demonstrated slow progress of biodiversity modelling (at least for applications at the level of decision makers) during 1990’s and 2000’s. This is in contrast to well known opinions about many successes in biodiversity conservation during 1992-1998. However these attempts were more virtually, instead of evidence based studies of its natural analogy as stated by V. Prydatko (2000).

The first location-based evaluation of the performance of Ukraine’s commitments under Convention on Biological Diversity (CBD) was done and summarized seven years ago (Sozinov & Prydatko, 2006). It reported both satisfactory and unsatisfactory indexes of Ukraine’s 14 years of membership to the Convention (since the Convention was signed). During this period, Ukraine was placed before Congo and after Togo on the basis of efforts devoted to preserve biological diversity (in percentage to the GDP). At the same time, over 200 legislative documents were issued (and approximately 13 normative documents developed per year), which directly or indirectly facilitated the preservation of biological diversity and the active development of cooperation in this subject. Regardless of 14 years of experience as a member to the Convention, only 8% of the documents issued ensured direct application of the articles and decisions of the Convention on Biological Diversity, which might be considered as the documents of practical CBD-directives. During 14 years the reporting of Ukraine remained unsatisfactory as only 15% of the obligatory reports were submitted. According to the selective data, the reporting activity placed Ukraine on the same level with Uganda and lower than Armenia and Uzbekistan.

This contributed to low assessment scores, given by the public during the All-Ukrainian survey in 2005 – Ukrainian biological diversity, i.e. 2.7 out of 5.0 (Prydatko et al., 2006). The authors recommended that in order to ensure the fulfillment of the most actual tasks and commitments under the CBD, including the 2010 Target, Strategic Plan of the Convention, New Millennium Targets, and repayment of informational debts, the national team will have to organize intensive activity and requires to consolidate efforts of governmental and nongovernmental environmental organizations, as well as of separate experts. Unfortunately, these
Related Content

A Fuzzy Approach Using Euclidean Geometrical Formulation for Classifying SAR Images
www.irma-international.org/article/a-fuzzy-approach-using-euclidean-geometrical-formulation-for-classifying-sar-images/109649/

Distance Education and ICT-Supported Learning in Lesotho: Issues and Evidence
www.irma-international.org/chapter/distance-education-ict-supported-learning/69504/

AC Magnetic Measurements on Superconductors: Design of a Device for Magneto-Thermal Measurements
www.irma-international.org/article/magnetic-measurements-superconductors/62657/

Motivational Gifts Survey
www.irma-international.org/chapter/motivational-gifts-survey/20259/
Revenue Efficiency of Fuzzy Sample Decision Making Unit

www.irma-international.org/article/revenue-efficiency-of-fuzzy-sample-decision-making-unit/176407/